设为首页加入收藏联系我们
欢迎光临多钦仪表(上海)有限公司官方网站!您是第622位访问者

当前位置:新闻动态  >  技术支持  >  PID 现场控制调节理论知识

> 新闻动态

PID 现场控制调节理论知识

编辑:多钦仪表  发布时间:2017.03.29 11:40:47   来源:多钦仪表

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

 

 

比例(P)控制

 比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 

 

积分(I)控制 :

 

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

 

微分(D)控制 :

 

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

 

 

PID控制器具有以下优点:

(1)原理简单,应用方便。

(2)适应性强。已经广泛应用于电力、机械、化工、热工、冶金、建材和石油等各种蹩产部门。酃便是目前最薪发展的过程计算机控制系统,其基本的控制规律仍然是PID控制规律。

(3)鲁棒性强。即其控制品质对被控对象特性的变化不敏感。大多数受控对象在受到外界扰动时,尤其是当外界负荷变化时,受控对象的动态特性往往会有较大的变化,为了满足要求的控制性能,就需要经常改变控制器的参数,这是很麻烦的。如果控制器的鲁棒性好,就无需频繁地改变控制器的参数。

关注&咨询
多钦仪表

QQ咨询
新浪微博
微信公众号
需要帮助